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1. Introduction

In recent years the higher dimensional gravity is attracting much interest. Apart from

the fact that the higher dimensional gravity is interesting in its own right, the increasing

amount of works devoted to the study of the higher dimensional spacetimes is inspired

from the string theory and the brane-world scenario with large extra dimensions. The

gravity in higher dimensions exhibits much richer dynamics and spectrum of solutions

than in four dimensions. One of the most reliable routes for better understanding of higher

dimensional gravity and the related topics are the exact solutions. However, the higher

dimensional solutions found so far are not so many. As yet to the best of our knowledge

there are no EMd solutions found in the literature that describe rotating charged black

holes in higher dimensions with an arbitrary dilaton coupling parameter (there are some

numerical solutions, however [1, 2]). Moreover, unlike the 4D case, in higher dimensions the

systematic construction of new solutions has not been accomplished yet. It is well known

that both vacuum and electrovacuum 4D Einstein equations are completely integrable being

restricted to spacetimes with two-dimensional Abelian group of isometries [3]-[17]. This

nice property is also shared by some effective string gravity models (or certain sectors of

them) which allows us to find many families of physically interesting exact solutions [18]-

[23]. The D-dimensional vacuum Einstein equations with (D − 2)-dimensional Abelian

group of isometries are completely integrable, too [24, 25]. Recently, in [26], we have

shown that, after imposing some symmetries on the spacetime and the electromagnetic

filed, the 5D Einstein-Maxwell equations are completely integrable.

The aim of this work is to make a step towards the systematic construction of exact

solutions in 5D Einstein-Maxwell-dilaton (EMd) gravity. We consider 5D EMd gravity in
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spacetimes with three commuting Killing vectors: one timelike and two spacelike Killing

vectors, one of which is hypersurface-orthogonal. Assuming a special ansatz for the Maxwell

field we show that the 2-dimensional reduced EMd equations are completely integrable

by deriving a Lax-pair presentation. We also develop a solution generating method for

explicit construction of exact EMd solutions with considered symmetries. The rotating

dipole black ring solutions in EMd gravity are derived as a particular application of the

developed solution generating method as well.

2. Dimensional reduction, coset presentation and complete integrability

We consider the 5D EMd gravity described by the action

S =
1

16π

∫

d5x
√−g

[

R − 2gµν∂µϕ∂νϕ − 1

4
e−2αϕFµνFµν

]

(2.1)

where α 6= 0 is the dilaton coupling parameter.

This action yields the following field equations

Rµν = 2∂µϕ∂νϕ +
1

2
e−2αϕ

(

FµλF λ
ν − 1

6
FσλF σλgµν

)

,

∇µ∇µϕ = −α

8
e−2αϕFσλF σλ, (2.2)

∇µ

(

e−2αϕFµν
)

= 0 .

In this paper we consider spacetimes with three commuting Killing vectors: one time-

like Killing vector T and two spacelike Killing vectors K1 and K2. We also assume that the

Killing vector K2 is hypersurface orthogonal. We require the electromagnetic and dilaton

fields to be invariant under the Abelian group generated by the Killing vectors, i.e.

LK1F = LK2F = LTF = 0, LK1ϕ = LK2ϕ = LT ϕ = 0, (2.3)

where LK denotes the Lie derivative along the vector K.

In adapted coordinates in which K2 = ∂/∂Y , the spacetime metric can be written in

the form

ds2 = e2udY 2 + e−uhijdxidxj (2.4)

where hij is a 4-dimensional metric with Lorentz signature. Both u and hij depend on the

coordinates xi only. The electromagnetic field is taken in the form

F = dAY ∧ dY (2.5)

where AY depends on the coordinates xi only. Let us note that this form of the electro-

magnetic field is compatible with the invariance of F with respect to the Killing vectors.

After a dimensional reduction along the Killing vector K2, the field equations (2.2) are

reduced to the following effective 4D theory:

DiDiu = −1

3
e−2u−2αϕhijDiAY DjAY , (2.6)
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DiDiϕ = −α

4
e−2u−2αϕhijDiAY DjAY , (2.7)

Di

(

e−2u−2αϕDiAY

)

= 0, (2.8)

Rij(h) =
3

2
∂iu∂ju + 2∂iϕ∂jϕ +

1

2
e−2u−2αϕ∂iAY ∂jAY . (2.9)

Here Di and Rij(h) are the covariant derivative and Ricci tensor with respect to the

Lorentz metric hij . We shall introduce the new parameter α∗ and the fields χ and ζ,

defined by

α∗ =

√
3

2
α, (2.10)

χ = u + αϕ, (2.11)

ζ = u − 2√
3α∗

ϕ. (2.12)

Further we introduce the symmetric matrix M1 given by

M1 =





eχ + 1+α2
∗

3 e−χA2
Y

√

1+α2
∗

3 e−χAY
√

1+α2
∗

3 e−χAY e−χ



 (2.13)

with detM1 = 1. Then the dimensionally reduced EMd equations become

Di

[

DiM1M
−1
1

]

= 0, (2.14)

DiDiζ = 0, (2.15)

Rij(h) = − 3

4(1 + α2
∗)

Tr
[

∂iM1∂jM
−1
1

]

+
3α2

∗

2(1 + α2
∗)

∂iζ∂jζ. (2.16)

These equations are yielded by the action

S =
1

16π

∫

d4x
√
−h

[

R(h) +
3

4(1 + α2
∗)

hijTr
(

∂iM1∂jM
−1
1

)

− 3α2
∗

2(1 + α2
∗)

hij∂iζ∂jζ

]

.

(2.17)

Clearly the action is invariant under the SL(2, R)×R group where the group action is

given by

M1 → GM1G
T , ζ → ζ + constant , (2.18)

G ∈ SL(2, R). In fact the matrices M1 parameterize a SL(2, R)/SO(2) coset. So we obtain

a non-linear σ-model coupled to 4D Einstein gravity with a minimally coupled scalar field

ζ.

Next step is to further reduce the effective 4D theory along the Killing vectors T and

K1. For this purpose, it is useful to introduce the twist of the Killing vector T

ω = −1

2
? (h) (T ∧ dT ) , (2.19)

were ?(h) is the Hodge dual with respect to the metric hij .
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One can show that the Ricci 1-form <h[T ] defined by

<h[T ] = Rij(h)T jdxi, (2.20)

satisfies

?(h) (T ∧ <h[T ]) = dω. (2.21)

In our case we obatin

<h[T ] =
3

2

(

T j∂ju
)

du +
(

T j∂jϕ
)

dϕ +
1

2
e−2u−2αϕ

(

T j∂jAY

)

dAY . (2.22)

Since the potentials u, ϕ and AY are invariant under the Killing symmetry generated

by T we have

T j∂ju = T j∂jϕ = T j∂jAY = 0 (2.23)

which gives <h[T ] = 0, i.e. dω=0. Therefore there exists (locally) a potential f such that

ω = df. (2.24)

In adapted coordinates for the Killing vectors T = ∂/∂t and K1 = ∂/∂X, and in the

canonical coordinates ρ and z for the transverse space, the 4D metric hij can be written

in the form

hijdxidxj = −e2U (dt + AdX)2 + e−2Uρ2dX2 + e−2Ue2Γ(dρ2 + dz2). (2.25)

For this form of the metric hij , combining (2.19) and (2.24), and after some algebra

we find that the twist potential f satisfies

∂ρf = −1

2

e4U

ρ
∂zA, (2.26)

∂zf =
1

2

e4U

ρ
∂ρA. (2.27)

Before writing the 2D reduced equations we shall introduce the symmetric matrix

M2 =

(

e2U + 4f2e−2U 2fe−2U

2fe−2U e−2U

)

(2.28)

with detM2 = 1. Then the 2D reduced EMd equations read

∂ρ

(

ρ∂ρM1M
−1
1

)

+ ∂z

(

ρ∂zM1M
−1
1

)

= 0, (2.29)

∂ρ

(

ρ∂ρM2M
−1
2

)

+ ∂z

(

ρ∂zM2M
−1
2

)

= 0, (2.30)

∂ρ (ρ∂ρζ) + ∂z (ρ∂zζ) = 0, (2.31)

ρ−1∂ρΓ = −1

8

[

Tr
(

∂ρM2∂ρM
−1
2

)

− Tr
(

∂zM2∂zM
−1
2

)]

− 3

8(1 + α2
∗)

[

Tr
(

∂ρM1∂ρM
−1
1

)

− Tr
(

∂zM1∂zM
−1
1

)]

+
3α2

∗

4(1 + α2
∗)

[

(∂ρζ)2 − (∂zζ)2
]

, (2.32)

ρ−1∂zΓ = −1

4
Tr

(

∂ρM2∂zM
−1
2

)

− 3

4(1 + α2
∗)

Tr
(

∂ρM1∂zM
−1
1

)

+
3α2

∗

2(1 + α2
∗)

∂ρζ∂zζ. (2.33)
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As a result we find that the ”field variables” M1 and M2 satisfy the equations of two

SL(2, R)/SO(2) σ-models in two dimensions, modified by the presence of the factor ρ. The

system equations for Γ can be integrated, once a pair of solutions for the two σ-models and

a solution of the linear equation for ζ are known. Therefore, the problem of generating

solutions to the 5D EMd equations with the described symmetries reduces to the solutions

of the two σ-models and the choice of a harmonic function.

It is well known that the σ-model equations are completely integrable [27, 28]. This is

a consequence of the fact that the σ-model equations can be considered as the compatibility

condition of the linear differential equations (Lax-pair presentation) [27, 28]

DρΨ =
ρU + λV

λ2 + ρ2
Ψ, (2.34)

DzΨ =
ρV − λU
λ2 + ρ2

Ψ, (2.35)

where

Dρ = ∂ρ +
2λρ

λ2 + ρ2
∂λ, Dz = ∂z −

2λ2

λ2 + ρ2
∂λ. (2.36)

Here V = ρ∂zMM−1, U = ρ∂ρMM−1 and λ is the complex spectral parameter. The

”wave function” Ψ(ρ, z, λ) is a complex matrix. The σ-model equations then follows from

the compatibility condition

[Dρ,Dz ]Ψ = 0. (2.37)

The matrix M can be found from the ”wave function” Ψ as M(ρ, z) = Ψ(ρ, z, λ = 0).

The inverse scattering transform (IST) method can be directly applied to (2.34) to

generate multisoliton solutions. The dressing procedure allows us to generate new solutions

from known ones. Since this dressing technique is well known we will not discuss it here

and refer the reader to [27, 28].

In this paper we will not apply the IST method. In the next section we present new

and simple enough solution generating method which allows us to generate new 5D EMd

solutions from known solutions of the 5D vacuum Einstein equations.

3. Solution construction

Let us consider two solutions M1 = M (1) and M2 = M (2) of the σ-model equation

∂ρ

(

ρ∂ρMM−1
)

+ ∂z

(

ρ∂zMM−1
)

= 0. (3.1)

In addition let us denote by γ(i) the solution of the system

ρ−1∂zγ
(i) = −1

4
Tr

(

∂ρM
(i)∂zM

(i)−1
)

, (3.2)

ρ−1∂ργ
(i) = −1

8

[

Tr
(

∂ρM
(i)∂ρM

(i)−1
)

− Tr
(

∂zM
(i)∂zM

(i)−1
)]

. (3.3)
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Then we find for the metric function Γ

Γ = γ(2) +
3

1 + α2
∗

γ(1) +
3α2

∗

1 + α2
∗

νζ (3.4)

where νζ is a solution of the system

ρ−1∂ρνζ =
1

4

[

(∂ρζ)2 − (∂zζ)2
]

, (3.5)

ρ−1∂zνζ =
1

2
∂ρζ∂zζ. (3.6)

From a practical point of view it is more convenient to associate the σ-model solutions

M (i) with the vacuum Einstein solutions1

ds2
E(i) = e2u

(i)
E dY 2 + e−u

(i)
E

[

−e2U
(i)
E

(

dt + A(i)
E dX

)2
(3.7)

+e−2U
(i)
E ρ2dX2 + e−2U

(i)
E e2Γ

(i)
E (dρ2 + dz2)

]

.

which correspond to the matrixes

M (i) =





e2U
(i)
E + 4

(

f
(i)
E

)2
e−2U

(i)
E 2f

(i)
E e−2U

(i)
E

2f
(i)
E e−2U

(i)
E e−2U

(i)
E



 . (3.8)

Here the metric function Γ
(i)
E for the vacuum Einstein equations satisfies2

ρ−1∂ρΓ
(i)
E = −1

8

[

Tr
(

∂ρM
(i)∂ρM

(i)−1
)

− Tr
(

∂zM
(i)∂zM

(i)−1
)]

+
3

4

[

(

∂ρu
(i)
E

)2
−

(

∂zu
(i)
E

)2
]

, (3.9)

ρ−1∂zΓ
(i)
E = −1

4
Tr

(

∂ρM
(i)∂zM

(i)−1
)

+
3

2
∂ρu

(i)
E ∂zu

(i)
E . (3.10)

It is not difficult to see from these equations that the metric function Γ
(i)
E can be

decomposed into the form

Γ
(i)
E = γ(i) + Ω

(i)
E (3.11)

where Ω
(i)
E is a solution to the system

ρ−1∂ρΩ
(i)
E =

3

4

[

(

∂ρu
(i)
E

)2
−

(

∂zu
(i)
E

)2
]

, (3.12)

ρ−1∂zΩ
(i)
E =

3

2
∂ρu

(i)
E ∂zu

(i)
E . (3.13)

Then we find

Γ = Γ
(2)
E − Ω

(2)
E +

3

1 + α2
∗

[

Γ
(1)
E − Ω

(1)
E + α2

∗νζ

]

. (3.14)

1From now on all quantities with subscript or superscript ”E” correspond to the vacuum case.
2Obviously, these equations are obtained from the EMd equations by setting AY = 0 and ϕ = 0.
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Further, comparing the matrixes M1 and M (1) we obtain

e2u = e
4U

(1)
E

1+α2
∗ e

2α2
∗

1+α2
∗

ζ
,

e2αϕ = e
4α2

∗

1+α2
∗

U
(1)
E e

−
2α2

∗

1+α2
∗

ζ
, (3.15)

AY =
2
√

3
√

1 + α2
∗

f
(1)
E .

Having once the metric functions, we find for the metric

ds2 = e
4U

(1)
E

1+α2
∗ e

2α2
∗

1+α2
∗

ζ
dY 2+e

−
2U

(1)
E

1+α2
∗ e

−
α2
∗

1+α2
∗

ζ
[

−e2U
(2)
E

(

dt + A(2)
E dX

)2
+ e−2U

(2)
E ρ2dX2

+

(

e2Γ
(1)
E

e2Ω
(1)
E

+ 2
3
Ω

(2)
E

)

3

1+α2
∗

(

e2νζ

e
2
3
Ω

(2)
E

)

3α2
∗

1+α2
∗

e2Γ
(2)
E (dρ2 + dz2)






. (3.16)

Taking into account that

g
E(i)
00 = −e−u

(i)
E e2U

(i)
E , (3.17)

g̃
E(i)
XX = g

E(i)
XX − g

E(i)
00 (A(i)

E )2 = e−u
(i)
E e−2U

(i)
E ρ2, (3.18)

gE(i)
ρρ = e−u

(i)
E e−2U

(i)
E e2Γ

(i)
E , (3.19)

and

e4U
(i)
E = (g

E(i)
00 )2g

E(i)
Y Y , (3.20)

e2Γ
(i)
E = |gE(i)

00 |gE(i)
Y Y gE(i)

ρρ , (3.21)

the metric can be presented in the form

ds2 =

[

|gE(1)
00 |

√

g
E(1)
Y Y

]
2

1+α2
∗

e
2α2

∗

1+α2
∗

ζ
dY 2

+

√

g
E(2)
Y Y e

−
α2
∗

1+α2
∗

ζ

[

|gE(1)
00 |

√

g
E(1)
Y Y

] 1

1+α2
∗

[

g
E(2)
00

(

dt + A(2)
E dX

)2
+ g̃

E(2)
XX dX2

+

(

|gE(1)
00 |gE(1)

Y Y g
E(1)
ρρ

e2Ω
(1)
E

+ 2
3
Ω

(2)
E

)
3

1+α2
∗

(

e2νζ

e
2
3
Ω

(2)
E

)

3α2
∗

1+α2
∗

gE(2)
ρρ (dρ2 + dz2)






. (3.22)

Summarizing, we obtain the following important result presented as a proposition.

Proposition. Let us consider two solutions of the vacuum 5D Einstein equations

ds2
E(i) = g

E(i)
Y Y dY 2 + g

E(i)
00

(

dt + A(i)
E dX

)2
+ g̃

E(i)
XX dX2 + gE(i)

ρρ (dρ2 + dz2) (3.23)

and a harmonic function ζ.

– 7 –
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Then the following give a solution to the 5D EMd equations3

ds2 =

[

|gE(1)
00 |

√

g
E(1)
Y Y

]
2

1+α2
∗

e
2α2

∗

1+α2
∗

ζ
dY 2

+

√

g
E(2)
Y Y e

−
α2
∗

1+α2
∗

ζ

[

|gE(1)
00 |

√

g
E(1)
Y Y

] 1

1+α2
∗

[

g
E(2)
00

(

dt + A(2)
E dX

)2
+ g̃

E(2)
XX dX2

+

(

|gE(1)
00 |gE(1)

Y Y g
E(1)
ρρ

e2Ω
(1)
E

+ 2
3
Ω

(2)
E

)
3

1+α2
∗

(

e2νζ

e
2
3
Ω

(2)
E

)

3α2
∗

1+α2
∗

gE(2)
ρρ (dρ2 + dz2)






, (3.24)

AY =
2
√

3
√

1 + α2
∗

f
(1)
E , (3.25)

e2αϕ =

[

|gE(1)
00 |

√

g
E(1)
Y Y

]

2α2
∗

1+α2
∗

e
−

2α2
∗

1+α2
∗

ζ
, (3.26)

where f
(1)
E is a solution to the system

∂ρf
(1)
E = −1

2

(g
E(1)
00 )2g

E(1)
Y Y

ρ
∂zA(1)

E , (3.27)

∂zf
(1)
E =

1

2

(g
E(1)
00 )2g

E(1)
Y Y

ρ
∂ρA(1)

E , (3.28)

Ω
(i)
E satisfy

ρ−1∂ρΩ
(i)
E =

3

16

[

(

∂ρ ln
(

g
E(i)
Y Y

))2
−

(

∂z ln
(

g
E(i)
Y Y

))2
]

, (3.29)

ρ−1∂zΩ
(i)
E =

3

8
∂ρ ln

(

g
E(i)
Y Y

)

∂z ln
(

g
E(i)
Y Y

)

, (3.30)

and νζ solves the equations

ρ−1∂ρνζ =
1

4

[

(∂ρζ)2 − (∂zζ)2
]

, (3.31)

ρ−1∂zνζ =
1

2
∂ρζ∂zζ. (3.32)

Let us also note that, in general, the exchange of the two sigma models M (1) ←→ M (2)

leads to different EMd solutions.

The presented proposition gives us a tool to generate new 5D EMd solutions in a simple

way from known solutions to the vacuum 5D Einstein equations. The technical difficulties

are eventually concentrating in finding of ΩE, fE and νζ , but there are no principle obstacles

since the systems for ΩE, fE and νζ are first order partial differential equation systems of

the simplest kind.

3More generally we can take AY = ± 2
√

3√
1+α2

∗

f
(1)
E + const.
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Through the use of the proposition we can generate the ”5D EMd images” of all known

solutions of the vacuum 5D Einstein equations with the symmetries we consider here. It

is not possible to present explicitly here the ”EMd images” of all known vacuum Einstein

solutions. We shall consider here one of the most interesting examples-namely we shall

derive the rotating dipole black ring solutions.

4. Derivation of the rotating dipole black ring solutions

The systematic derivation of the dipole black ring solutions in EM gravity was given in

our previous paper [26]. More precisely, we have shown that the EM dipole rings can be

derived as a ”nonlinear superposition” of two neutral rotating black rings solutions. Here,

we shall follow the same scheme in order to derive the EMd rotating dipole ring solutions.

We take two copies of the neutral black ring solution with different parameters: the

first solution is with parameters {λ1, ν,R} while the second is parameterized by {λ2, ν,R}:

ds2
E(i) = −Fλi

(y)

Fλi
(x)

(

dt + C(ν, λi)R
1 + y

Fλi
(y)

dψ

)2

+
R2

(x − y)2
Fλi

(x)

[

− G(y)

Fλi
(y)

dψ2 − dy2

G(y)
+

dx2

G(x)
+

G(x)

Fλi
(x)

dφ2

]

(4.1)

where

Fλi
(x) = 1 + λix, G(x) = (1 − x2)(1 + νx), (4.2)

and

C(ν, λi) =

√

λi(λi − ν)
1 + λi

1 − λi

. (4.3)

It should be also noted that in the case under consideration the Killing vectors are

denoted by

K1 = ∂/∂ψ, K2 = ∂/∂φ. (4.4)

The neutral black ring solution has already been written in canonical coordinates

in [29], that is why we present here the final formulas:

|gE(i)
00 | =

(1 + λi)(1 − ν)R1 + (1 − λi)(1 + ν)R2 − 2(λi − ν)R3 − λi(1 − ν2)R2

(1 + λi)(1 − ν)R1 + (1 − λi)(1 + ν)R2 − 2(λi − ν)R3 + λi(1 − ν2)R2
,

g
E(i)
φφ =

(R3 + z − 1
2R2)(R2 − z + 1

2R2ν)

R1 − z − 1
2R2ν

=
(R1 + R2 + νR2)(R1 − R3 + 1

2(1 + ν)R2)(R2 + R3 − 1
2(1 − ν)R2)

R2((1 − ν)R1 − (1 + ν)R2 − 2νR3)
,

gE(i)
ρρ = [(1 + λi)(1 − ν)R1 + (1 − λi)(1 + ν)R2 − 2(λi − ν)R3 + λi(1 − ν2)R2]

×(1 − ν)R1 + (1 + ν)R2 + 2νR3

8(1 − ν2)2R1R2R3
, (4.5)

A(i)
E =

−2C(ν, λi)R(1 − ν)[R3 − R1 + 1
2R2(1 + ν)]

(1 + λi)(1 − ν)R1 + (1 − λi)(1 + ν)R2 − 2(λi − ν)R3 − λi(1 − ν2)R2
,

– 9 –
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where

R1 =

√

ρ2 + (z +
ν

2
R2)2, (4.6)

R2 =

√

ρ2 + (z − ν

2
R2)2, (4.7)

R3 =

√

ρ2 + (z − 1

2
R2)2. (4.8)

The next step is to find the functions Ω
(i)
E and f

(i)
E . After straightforward but tedious

calculations we obtain

e
8
3
Ω

(1)
E = e

8
3
Ω

(2)
E =

[(1 − ν)R1 + (1 + ν)R2 + 2νR3]
2

8(1 − ν2)2R1R2R3
g

E(i)
ΦΦ , (4.9)

f
(i)
E =

(1 − ν)RC(ν, λi)[R1 − R3 + 1
2 (1 + ν)R2]

(1 + λi)(1 − ν)R1 + (1 − λi)(1 + ν)R2 + 2(ν − λi)R3 + λi(1 − ν2)R2
.

Finally we have to choose a harmonic function ζ. It turns out that the appropriate

choice is

ζ = u
(1)
E = u

(2)
E =

1

2
ln(g

E(1)
φφ ) =

1

2
ln(g

E(2)
φφ ). (4.10)

With this choice we find4

ds2 = |gE(1)
00 |

2

1+α2
∗ g

E(1)
φφ dφ2 + |gE(1)

00 |−
1

1+α2
∗

[

g
E(2)
00

(

dt + AE(2)dψ
)2

+ g̃
E(2)
ψψ dψ2

+





|gE(1)
00 |gE(1)

φφ g
E(1)
ρρ

e
8
3
Ω

(1)
E





3

1+α2
∗

gE(2)
ρρ (dρ2 + dz2)






, (4.11)

Aφ = ± 2
√

3
√

1 + α2
∗

f
(1)
E + const , (4.12)

e2αϕ = |gE(1)
00 |

2α2
∗

1+α2
∗ . (4.13)

It is more convenient to present the solution in coordinates in which it takes simpler

form. Such coordinates are the so-called C-metric coordinates given by

ρ =
R2

√

−G(x)G(y)

(x − y)2
, z =

1

2

R2(1 − xy)(2 + νx + νy)

(x − y)2
. (4.14)

Performing this coordinate change we find

ds2 =

(

Fλ1(y)

Fλ1(x)

)
2

1+α2
∗ R2G(x)

(x − y)2
dφ2 +

(

Fλ1(y)

Fλ1(x)

)− 1

1+α2
∗

×
[

−Fλ2(y)

Fλ2(x)

(

dt + C(ν, λ2)R
1 + y

Fλ2(y)
dψ

)2

4We have taken into account that g
E(1)
φφ = g

E(2)
φφ and Ω

(1)
E = Ω

(2)
E = 3νζ which considerably simplifies the

solution.
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−R2Fλ2(x)

(x − y)2
G(y)

Fλ2(y)
dψ2 + (Fλ1(y))

3

1+α2
∗
R2Fλ2(x)

(x − y)2

(

− dy2

G(y)
+

dx2

G(x)

)]

, (4.15)

Aφ = ±
√

3C(ν, λ1)
√

1 + α2
∗

R 1 + x

Fλ1(x)
+ const , (4.16)

e2αϕ =

(

Fλ1(y)

Fλ1(x)

)

2α2
∗

1+α2
∗

. (4.17)

Finally, in order to exclude pathological behavior of the metric and to obtain black

solutions we must consider only negative λ1, i.e.

λ1 = −µ , 0 ≤ µ < 1. (4.18)

and positive λ2 and ν satisfying

0 < ν ≤ λ2 < 1. (4.19)

One can easily see that the generated 5D EMd solutions are just the EMd rotating

dipole black ring solutions [30] . Let us also recall [30] that in order to avoid the possible

conical singularities at x = ±1 and y = −1 we must impose

∆φ = ∆ψ = 2π
(1 + µ)

3

2(1+α2
∗)
√

1 − λ2

1 − ν
, (4.20)

1 − λ2

1 + λ2

(

1 + µ

1 − µ

)
3

1+α2
∗

=

(

1 − ν

1 + ν

)2

. (4.21)

An alternative derivation of the the rotating dipole black ring solutions is given in the

appendix.

5. Conclusion

In this paper we considered EMd gravity in spacetimes admitting three commuting Killing

vectors: one timelike and two spacelike one of them being hypersurface orthogonal. As-

suming also a special ansatz for the electromagnetic field we have shown that the EMd

equations reduce to one linear equation, two SL(2, R)/SO(2) σ-models and a separated

linear system of first order partial differential equations. This ensures the existence of

Lax-pair presentation, therefore the complete integrability of the considered sector of EMd

gravity. The Lax pair presentation also opens the way to apply the IST method and to

generate multisoliton solutions.

Using the two σ-models structure of the reduced EMd sector we gave an explicit

construction for generating exact 5D EMd solutions from known solutions of the 5D vacuum

Einstein equations in the same symmetry sector. As an example we gave, for the first time,

the explicit and systematic derivation of the rotating dipole black ring solutions.

The presented solution generating method can also be used to generate many other

exact 5D EMd solutions. It would be interesting to find the EMd solutions corresponding

to the ”nonlinear superposition” of 5D Myers-Perry black holes [31] as well as other 5D

vacuum Einstein solutions.
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A. Derivation of the rotating dipole black ring solutions in non-canonical

coordinates

In many cases it turns out that the canonical coordinates are not the most convenient ones

and the corresponding equations are more tractable in other coordinates. Here we present

the basic results in terms of the coordinates x and y in which the transverse space metric

has the form

dl2 = e−2U(x,y)e2H(x,y)

(

dx2

A(x)
+

dy2

B(y)

)

(A.1)

where A(x) and B(y) are appropriate functions.

For the reduced EMd equations we find

∂x

[
√

A(x)

B(y)
∂xρ

]

+ ∂y

[
√

B(y)

A(x)
∂yρ

]

= 0, (A.2)

∂x

[

ρ

√

A(x)

B(y)
∂xM1M

−1
1

]

+ ∂y

[

ρ

√

B(y)

A(x)
∂yM1M

−1
1

]

= 0, (A.3)

∂x

[

ρ

√

A(x)

B(y)
∂xM2M

−1
2

]

+ ∂y

[

ρ

√

B(y)

A(x)
∂yM2M

−1
2

]

= 0, (A.4)

∂x

[

ρ

√

A(x)

B(y)
∂xζ

]

+ ∂y

[

ρ

√

B(y)

A(x)
∂yζ

]

= 0, (A.5)

S

ρ
∂xH =

1

2ρ
∂xS +

1

8

[

B(y)∂xρTr
(

∂yM2∂yM
−1
2

)

− A(x)∂xρTr
(

∂xM2∂xM−1
2

)]

+
3

8(1 + α2
∗)

[

B(y)∂xρTr
(

∂yM1∂yM
−1
1

)

− A(x)∂xρTr
(

∂xM1∂xM−1
1

)]

−1

4
B(y)∂yρTr

(

∂xM2∂yM
−1
2

)

− 3

4(1 + α2
∗)

B(y)∂yρTr
(

∂xM1∂yM
−1
1

)

(A.6)

+
3α2

∗

4(1 + α2
∗)

(

A(x)∂xρ(∂xζ)2 − B(y)∂xρ(∂yζ)2
)

+
3α2

∗

2(1 + α2
∗)

B(y)∂yρ∂xζ∂yζ,
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S

ρ
∂yH =

1

2ρ
∂yS +

1

8

[

A(x)∂yρTr
(

∂xM2∂xM−1
2

)

− B(y)∂yρTr
(

∂yM2∂yM
−1
2

)]

+
3

8(1 + α2
∗)

[

A(x)∂yρTr
(

∂xM1∂xM−1
1

)

− B(y)∂yρTr
(

∂yM1∂yM
−1
1

)]

−1

4
A(x)∂xρTr

(

∂xM2∂yM
−1
2

)

− 3

4(1 + α2
∗)

A(x)∂xρTr
(

∂xM1∂yM
−1
1

)

(A.7)

+
3α2

∗

4(1 + α2
∗)

(

B(y)∂yρ(∂yζ)2 − A(x)∂yρ(∂xζ)2
)

+
3α2

∗

2(1 + α2
∗)

A(x)∂xρ∂xζ∂yζ,

where

S = A(x)(∂xρ)2 + B(y)(∂yρ)2. (A.8)

The equations for the twist potential are

∂xf = −1

2

√

B(y)

A(x)

e4U

ρ
∂yA, (A.9)

∂yf =
1

2

√

A(x)

B(y)

e4U

ρ
∂xA. (A.10)

Further we proceed as in section 3. Potentials u, AY and ϕ are again given by (3.15).

One can show that

H = H
(2)
E − Ω

(2)
E +

3

1 + α2
∗

[

H
(1)
E − 1

2
ln(S) − Ω

(1)
E

]

+
3α2

∗

1 + α2
∗

νζ (A.11)

where Ω
(i)
E are solutions to the systems

S

ρ
∂xΩ

(i)
E =

3

4

[

A(x)∂xρ(∂xu
(i)
E )2 − B(y)∂xρ(∂yu

(i)
E )2

]

+
3

2
B(y)∂yρ∂xu

(i)
E ∂yu

(i)
E , (A.12)

S

ρ
∂yΩ

(i)
E =

3

4

[

B(y)∂yρ(∂yu
(i)
E )2 − A(x)∂yρ(∂xu

(i)
E )2

]

+
3

2
A(x)∂xρ∂xu

(i)
E ∂yu

(i)
E ,

and νζ satisfies

S

ρ
∂xνζ =

1

4

[

A(x)∂xρ(∂xζ)2 − B(y)∂xρ(∂yζ)2
]

+
1

2
B(y)∂yρ∂xζ∂yζ, (A.13)

S

ρ
∂yνζ =

1

4

[

B(y)∂yρ(∂yζ)2 − A(x)∂yρ(∂xζ)2
]

+
1

2
A(x)∂xρ∂xζ∂yζ.

Taking into account the explicit expression of e2u from (3.15) and the decomposi-

tion (A.11) we find for the EMd metric the following formula

ds2 = e
4U

(1)
E

1+α2
∗ e

2α2
∗

1+α2
∗

ζ
dY 2 + e

−
2U

(1)
E

1+α2
∗ e

−
α2
∗

1+α2
∗

ζ
[

−e2U
(2)
E

(

dt + A(2)
E dX

)2
+ e−2U

(2)
E ρ2dX2

+

(

S−1e2H
(1)
E

e2Ω
(1)
E

+ 2
3
Ω

(2)
E

)

3

1+α2
∗

(

e2νζ

e
2
3 Ω

(2)
E

)

3α2
∗

1+α2
∗

e−2U
(2)
E e2H

(2)
E

(

dx2

A(x)
+

dy2

B(y)

)






. (A.14)
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The above presented results give us an opportunity to derive dipole black solutions

more simply when the the transverse space coordinates are appropriately chosen. The

most natural and convenient choice is

A(x) = G(x), (A.15)

B(x) = −G(y). (A.16)

Then, from the neutral black ring solution we find

e2u
(i)
E =

R2G(x)

(x − y)2
,

A(i)
E = C(ν, λi)R

1 + y

Fλi
(y)

,

e4U
(i)
E =

F 2
λi

(y)

F 2
λi

(x)

R2G(x)

(x − y)2
, (A.17)

ρ =
R2

(x − y)2

√

−G(x)G(y),

e2H
(i)
E =

R4Fλi
(y)G(x)

(x − y)4
.

Having A(x), B(y) and ρ we can calculate S and the result is

S = R4 (x + y + ν + νxy)

4(x − y)3
[2 − ν + ν(x + y) + νxy] [−2 − ν − ν(x + y) + νxy] . (A.18)

Solving equations (A.12) we find

e
8
3
Ω

(1)
E

(x,y) = e
8
3
Ω

(2)
E

(x,y) = S−1(x, y)
R4G(x)

(x − y)4
. (A.19)

Therefore we have

S−1e2H
(1)
E

e
8
3
Ω

(1)
E

= Fλ1(y). (A.20)

The next step is to specify the harmonic function ζ. As we have already mentioned in

section 4 the appropriate choice is

ζ = u
(1)
E = u

(2)
E (A.21)

which means that νζ = 1
3Ω

(1)
E .

Summarizing, we obtain the following expression for the 5D EMd metric

ds2 =

(

Fλ1(y)

Fλ1(x)

) 2

1+α2
∗ R2G(x)

(x − y)2
dφ2 +

(

Fλ1(y)

Fλ1(x)

)− 1

1+α2
∗

×
[

−Fλ2(y)

Fλ2(x)

(

dt + C(ν, λ2)R
1 + y

Fλ2(y)
dψ

)2

−R2G(y)

(x − y)2
Fλ2(x)

Fλ2(y)
dψ2 + (Fλ1(y))

3

1+α2
∗
R2Fλ2(x)

(x − y)2

(

dx2

G(x)
− dy2

G(y)

)]

. (A.22)
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Taking into account the explicit form of e4U
(1)
E , A(1)

E and ρ from (A.17), the equations

for the twist potential become

∂xf
(1)
E = −1

2
C(ν, λ1)

R(1 − λ1)

F 2
λ1

(x)
, (A.23)

∂yf
(1)
E = 0. (A.24)

Integrating we obtain

f
(1)
E = −1

2
C(ν, λ1)

R(1 + x)

Fλ1(x)
+ const . (A.25)

Therefore the electromagnetic field is given by

AY = ±
√

3C(ν, λ1)
√

1 + α2
∗

R(1 + x)

Fλ1(x)
+ const . (A.26)
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